Παραπομπές

Κρυπτογραφία

NTUA Logo

ΗΜΜΥ ΕΜΠ

  1. Σημειώσεις Ε. Ζάχου - Α. Παγουρτζή, ΕΜΠ, 2014.
  2. D. Stinson: Cryptography: Theory and Practice, 3rd edition, CRC Press, 2005.
  3. A. Menezes, P. van Oorschot, and C. Vanstone: Handbook of Applied Cryptography: http://www.cacr.math.uwaterloo.ca/hac.
  4. J. Katz and Y. Lindell: Introduction to Modern Cryptography, Chapman & Hall/CRC Press, 2007.
  5. V. Shoup: A Computational Introduction to Number Theory and Algebra: http://shoup.net/ntb/.
  6. B. Schneier: Applied Cryptography: http://www.schneier.com/book-applied.html.
  7. W.Trappe, L. Washington: Introduction to Cryptography with Coding Theory.
  8. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman and Hall/Crc Cryptography and Network Security Series). Chapman and Hall/CRC, 2007
  9. Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer Science-Business Media, 2009.
  10. A.Κιαγιάς: Τεχνικές Σύγχρονης Κρυπτογραφίας: σημειώσεις
  11. Nigel Smart. Introduction to cryptography: link
  12. Dan Boneh, Introduction to cryptography, online course
  13. Andreas M. Antonopoulos: Mastering Bitcoin: link
  • Ε. Ζάχος, Α. Παγουρτζής, Δ. Φωτάκης: "Σύντομη Εισαγωγή στη Θεωρία Πολυπλοκότητας":pdf
  • Ε. Ζάχος: "Computational Complexity Notes (in English)":pdf
  • V. Shoup: "A Primer on Algebra and Number Theory for Computer Scientists":pdf
  • R. Rivest, A. Shamir, L. Adleman: "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems"
  • W. Diffie, M. Hellman: "New Directions in Cryptography": ps (gzipped), pdf.
  • S. Goldwasser, M. Belare: Lecture Notes on Cryptography: pdf.
  • M. Agrawal, N. Kayal, N. Saxena: Primality is in P: pdf.
  • Berry Schoenmakers, Cryptographic Protocols: pdf
  • Aggelos Kiayias, Cryptography primitives and protocols: link
  • Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System: pdf
  • Shafi Goldwasser, Mihir Bellare: Lecture Notes on Cryptography pdf
  • Bitcoin and Cryptocurrency Technologies (Princeton): pdf
  • M. Bellare, P. Rogaway, (1993). "Random Oracles are Practical: A Paradigm for Designing Efficient Protocols". ACM Conference on Computer and Communications Security: 62–73.
  • M. Bellare and P. Rogaway. Optimal asymmetric encryption. Advances in Cryptology—EUROCRYPT'94. Springer Berlin Heidelberg, 1995.
  • D. Bleichenbacher, D. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS1, Advances in Cryptology—CRYPTO'98. Springer Berlin Heidelberg, 1998.
  • D Boneh, Twenty years of attacks on the RSA cryptosystem. Notices of the AMS 46.2 (1999): 203-213.
  • R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Journal of the ACM, 51(4):557–594, 2004.
  • D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R.L. Rivest, and A.T. Sherman, editors, Advances in Cryptology Proceedings of Crypto 82, pages 199-203, 1983
  • D. Chaum. (1985). "Security without identification: Transaction systems to make big brother obsolete". Communications of the ACM 28 (10): 1030. doi:10.1145/4372.4373
  • D. Chaum and Eugene Heyst. Group signatures. In Donald W. Davies, editor, Advances in Cryptology — EUROCRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 257--265. Springer Berlin Heidelberg, 1991.
  • A. May. Computing the rsa secret key is deterministic polynomial time equivalent to factoring. In Advances in Cryptology–CRYPTO 2004, pages 213–219. Springer, 2004.
  • H. Petersen. How to convert any digital signature scheme into a group signature scheme. In Security Protocols Workshop, pages 177--190, 1997.
  • T. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO ’91, pages 129–140, 1991.
  • R.L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems . Communications of the ACM, 21:120–126, 1978.
  • A. Shamir, How to share a secret. Communications of the ACM 22.11 (1979): 612-613.
  • M. J Wiener. Cryptanalysis of short rsa secret exponents. Information Theory, IEEE Transactions on, 36(3):553–558, 1990.